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Please give some concerns on understory.
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0 Importance of understory layer

B Function

v'fundamental data for ecological process, soil and

water conservation, animal habitats,...
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How we characterize understory structure ?




B Definition of gap fraction (GF)

v The probability of a light beam passing through the
canopy without interacting with vegetation elements.

v’ Indicator of understory vegetation structure, related
to biophysical variables.




How to measure GF using RS techniques ?




Passive RS to deal with understory

B Ways
v RTM with multiangular RS

v unique phenological window with time-series RS

v nonlinear ecological relationship of two layers
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Active RS to derive gap fraction

m LiDAR: ability of penetration

v discrete-return LIDAR: return-number -based indices but

limited by sparse point cloud (Sumnall et al, 2021; Campbell et al., 2018)

v full waveform LiDAR: simplified radiative transfer model of laser

pulse with well-characterized understory info (song et al., 2021)

unsatisfied accuracy, low robustness
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A new method - energy dimidiate model
(\"%)




2 Basic idea of energy dimidiate model

m Total return energy is from two parts, i.e., upper and lower

R=R;,+ R,
B Lower-layer return energy is from two parts, i.e., vegetation and

soil
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2 Basic idea of energy dimidiate model (continue)

B With RTM (only first-order scattering considered), we can form

S =p,(1-) + pyf

Nell

Vegetation

m Only the understory backscattering coefficient is needed

R = Ru"l'Rg:]OpuPo(l_Pu)'l'Rg

v we may extract the soil return energy directly form the waveform
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2 EDM model: solve the unknown parameters (

B The soil echo can be seen as a Gaussian distribution model

= L e _%(g)z

V2mo

Rg

B We used a half-Gaussian fitting method to derive the R,

v assume the soil echo under zero height is pure

v' the understory vegetation height is larger than the pulse time

resolution (15 cm for 1 ns)
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2 EDM model: solve the unknown parameters (

B Height normalization for waveform

v" extract the local maximum at the lowest height
v" ground filter for the local maximum points using CSF filter

v implement height normalization for the whole waveform

v" use a height threshold to separate upper (R.) and lower layer (R,;,)
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2 EDM model: solve the unknown parameters (')

B The derivation of P, is given by

p 1 R, 1

= — *

7 RU 1_I_Rg *pv
Ry pg

v" assume the backscattering coefficients of both overstory and understory

vegetation are identical

v’ the term p,, refer to the global backscattering coefficient for vegetation

B The ratio (z—v) can be derived by a linear regression
g

Pv
R, = — p_ Rg"']Opv
g
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2 EDM model: solve the unknown parameters (

B The endmember (Jyp,) can be derived by a linear regression

Ry = —'“Rg+Jopy

B Endmember variability shall be considered
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We need data to test it.




3 synthetic data

B A range of virtually realistic forest scenarios
v' sparse, mediate and dense plots for broadleaf, coniferous
and mixed forest (3x3)

v' spatial variation of understory vegetation cover

v waveform and point cloud simulation by LESS model




3 Real data

B Boreal forest in Sanhanba National Forest Park

v’ footprint size =25 cm, calibrated waveform

v' field survey of understory gap fraction

 digital camera and image segmentation
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Let’ s see the evaluation of EDM.




4 Evaluation based on synthetic data

B Understory gap fraction

v EDM highly improved the retrieval accuracy compared to return-

number-based method (i.e., using point clouds) (RMSE<0.05)

v EDM is not sensitive to the overstory occlusion, the return-
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4 Evaluation based on synthetic data

B Overstory gap fraction

v EDM shows slightly Coniferous Mixed broadleaf
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4 Evaluation based on real data

v' For understory gap fraction, EDM outcomes have good consistency

with field measurements

v For overstory gap fraction, EDM seems overestimated but maybe
due to the “fake-truth”
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What' s the next step ?




B Possible test in temperate and tropical forests

B Analysis of slope effect even for small-footprint

B Thinking the possibility of retrieval by satellite
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Thank you! Questions?

Linyuan Li

http://www.rs-lilinyuan.com/
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