

基于多源遥感与生长模型的 火后森林受损评估与恢复预测

李林源 Co-contributor:林思美、黄华国 2024.06.20

lilinyuan@bjfu.edu.cn

CONTENTS

全球变暖导致野火风险加剧

□气候变暖导致的干旱加剧和火灾季节延长,加剧了野火风险

□ 气候模型预测,本世纪末全球频繁发生火灾的地区将 增加29% (北方森林+111%、温带森林+25%)(Senande-Rivera et al., 2022, NC)

解析火循环过程对理解生态系统功能尤为重要

(Credit: EPSCoR)

火后短期受损与长期恢复是森林管理的关键

- □ 精确评估火后短期受损对量化火灾对生态过程的影响十分重要
- 定量预测火后长期恢复对制定森林管理策略、支持碳中和研究 具有重要作用

□火烈度 (Burn severity): 特定区域内火灾对植被和土壤的影响

□通常采用地面调查CBI (composite burn index) 量化火烈度

火后长期 – 火后生长评估与预测

□火后恢复(post-fire recovery)指森林向火前的结构和功能的演替过程 □火后恢复进程与火烈度、植被类型、立地环境、气候因素密切相关

2 火后短期受损评估

火烈度的地面调查

□ 综合燃烧指数 (CBI, Composite Burn Index)

主观性评估,空间代表性、样地可达性

□ 单源光学主被动遥感 — **双时相变化监测**

(Eidenshink et al., 2007)

(Kane et al., 2022)

□ 混合综合燃烧指数 (HCBI, Hybrid Composite Burn Index)

✓ 激光雷达波形变化:主要反映了结构变化,较弱反映了光谱变化

✓ 光学影像光谱变化:同时反映了结构变化与组分光学特性变化

(Lin, **Li***, et al., 2024, RSE)

□ 混合综合燃烧指数 (HCBI, Hybrid Composite Burn Index)

(评级因子 (波形变化指标) :
$$RWC_i = \frac{CE_{pre} - CE_{post}}{CE_{pre}}$$

1
()
(光谱变化指标):
$$RSC_i = \sum \frac{MSAVI_{pre} - MSAVI_{post}}{MSAVI_{pre}}/n$$

2 评级因子评价表 (基于模拟数据): RWC_i~~CBI_i, RSC_i~~CBI_i

3 ✓ 分层HCBI与总体HCBI: $HCBI_i = \omega_{RSC_i} \times Score_{RSC_i} + \omega_{RWC_i} \times Score_{RWC_i}$

 $HCBI_s = (HCBI_o + HCBI_u)/2$

火后短期模拟数据

□ 模拟不同火烈度情况的火前与火后森林场景及主被动遥感数据

评级因子评价表

□ 模拟数据条件下计算的CBI可作为参考值!

□ 分别拟合乔木层与林下层的评级因子与CBI的相关曲线

火烧严重程度等级									
林层		未火烧	轻度		中度		重度		权重
	分数	0	0.5	1.0	1.5	2.0	2.5	3.0	
林下层									
RWC		未变化	3%	7%	15%	28%	50%	>75%	0.5
RSC		未变化	5%	11%	23%	40%	62%	>85%	0.5
$HCBI_{U} = 0.5 \cdot Score(RWC) + 0.5 \cdot Score(RSC)$									
林上层									
RWC		< 5%	15%	27%	43%	61%	82%	100%	0.7
RSC		< 28%	35%	44%	52%	62%	73%	>86%	0.3
$HCBI_0 = 0.7 \cdot Score(RWC) + 0.3 \cdot Score(RSC)$									

基于模拟数据的HCBI评价

□ 乔木层、林下层 与林分总体的 CBI与HCBI均具 有良好的一致性

- R2>0.96
- RMSE<0.1

火后短期实际数据

□ 2019年秀山火烧迹地分布情况

✓ 主被动遥感数据 GEDI, WorldView 2; Sentinel-2

✓ 地面样地调查数据 CBI

GEDI火前火后分层波形获取

(杨学博, 2021)

WorldView-2火前火后分层光谱获取

□ 存档火前与火后WV-2数据

- ✓ WV-2多光谱与全色影像融合为0.5 m分辨率
- ✓ 利用随机森林算法对火前火后的WV-2分类为**乔木、灌草、灰烬**
- ✓ 乔木层:树冠像元RSC平均值;林下层:火烧像元RSC平均值

基于Sentinel-2空间连续HCBI估算

□ 存档火前与火后Sentinel-2数据

- ✓ 生成多种类型的预 测变量
- ✓ 随机森林算法预测

参数类型	指数	描述	预测变量	
	NDVI	(NIR - R)/(NIR + R)	Δ NDVI, NDVI _{post}	
植被指数	RVI	NIR/R	ΔRVI , RVI_{post}	
	NBR	(NIR - SWIR2)/(NIR +	ΔNBR , NBR_{post}	
	EVI	$2.5 \cdot ((NIR - R)/(NIR +$	$\Delta EVI, EVI_{post}$	
	NDWI	(NIR - SWIR1)/(NIR +	ΔNDWI, NDWI _{post}	
	MSVAI	$(2 \cdot \text{NIR} + 1 - \sqrt{(2 \cdot \text{NIR})})$	Δ MSVAI, MSAVI _{post}	
	BAI	$1/((0.1 + R)^2 + (0.06 +$	BAIpost	
	Slope	-	Slope	
地形参数	Elevation	-	Elevation	
	Aspect	-	Aspect	
丰度图像	NV	非植被丰度比例	NV _{post}	
	GV	绿色植被丰度比例	VIPER MESMA	GV _{post}
	Ash	灰分丰度比例		Ash _{post}
	LAI	叶面积指数		Δ LAI, LAI _{post}
H- Hm Hm TH	CWC	冠层含水量		ΔCWC, CWC _{post}
生物物理 变量	LCC	叶绿素含量	SNAP	ΔCab, Cab _{post}
	FVC	植被覆盖度		Δ FVC, FVC _{post}
	fAPAR	光合有效辐射吸收分数		ΔfAPAR, fAPAR _{post}

456000

C

HCBI value

456000

林下层烧伤严重程度普遍高于乔木层,极小部分区域的林下层烧 伤程度小于乔木层。

WV-2

3 站点尺度长期恢复预测

时序趋势拟合预测火后长期恢复

□ 趋势拟合方法受限于遥感数据获取

- ✓ 较长时序的遥感数据
- ✓ 无法有效预测再干扰条件下的火后长期恢复

基于森林光能利用率模型的生长预减

□ 3-PGmix模型简介

 \checkmark

- ✓ 光能利用效率模型是采用数学模型来研究化学物质(光能)从环境到生物然 后再回到环境的生物地球化学循环过程。
- □ 3-PGmix 过程模型优势:

(Trotsiuk, et al, 2020)

树种特性参数标定

□ 过程模型参数标定是准确预测森林生长过程的第一步

✓ 大兴安岭根河针阔混交林

(Lin, Li*, et al., 2022, FEM)

林分元素预测验证

□ 2003年火烧迹地连续观测

 ✓ 总体上RRMSE小于0.3, 白桦根部生物量的预测偏差随着恢复时间的延 长而逐渐增大

不同土壤肥力下火后混交林分演替预测

以后的树种演替呈现由白桦为主导过渡到由落叶松主导的过程

- 当白桦和落叶松的比例相等时,就意味着优势物种开始转换, 大约需要25-39年的时间。
 - □ 高土壤肥力(FR)会加速森林的演替过程,低FR情况下为30-39年,中等FR情况下为27-36年,高FR情况下为26-32年。

4 空间连续长期恢复预测

空间连续火后森林生长预测

□ 选择重度火烈度的火烧迹地数据

 ✓ 以2003年根河市金河重大森林火灾为例,该火灾事件火烧面积大, 重度火烧迹地面积占比大。

□ 气象参数的获取以及空间外推

✓利用DEM与山
 地小气候模型
 (MTCLIM)
 将站点气象数
 据外推到整个
 重度火烧区域

□ 利用火前影像提取遥感指数 (TCG) 建立回归模型, 估算FR分布 □ 利用火后影像计算RSR指数, 构建LAI回归模型, 基于LAI估算初 始生物量, 进而估计初始林分密度

$$RSR = \frac{\rho_{NIR}}{\rho_{red}} \cdot \left(1 - \frac{\rho_{SWIR} - \rho_{SWIR_{min}}}{\rho_{SWIR_{max}} - \rho_{SWIR_{min}}} \right) \longrightarrow LAI$$

LAI的恢复预测与验证

3-PGmix模拟场景设置

□ 未来气侯场景设置:

	气候场景	时期	月平均气温增量/℃	月平均降水增量/mm	CO ₂ 浓度增量 (µmol•mol ⁻¹)
	当前气候	2004-2018	-	-	369
	DCD4 5	2019-2033	0.73 ± 0.51	4.18 ± 3.22	445
	KCP4.J	2034-2053	1.55 ± 0.5	6.25 ± 3.30	515
]		2019-2033	$0.86 {\pm} 0.51$	5.37 ± 3.2	452
	KCP8.5	2034-2053	2.44 ± 0.51	8.86±3.4	571

气候场景参数设置表

3-PGmix模型初始场景参数设置表

初始参数	白桦	落叶松	
种植时间	2003	2008	
初始年龄	8	3	
结束年龄	50	45	
初始土壤有效含水量		100	
最大土壤有效含水量		200	
最小土壤有效含水量		0	

NPP恢复预测与验证

□ 3-PGmix长期预测的NPP与参考的NPP具有较好的一致性 □ 3-PGmix模型预测的精度随着恢复时间的增加而逐渐降低

火后森林恢复对气候变化的响应

- □ 森林**碳汇的增加趋势为RCP8.5>RCP4.5>当前气候**
- □ 白桦NPP达到峰值时间为27-33年,而落叶松则相对白桦更晚 到达峰值为42-56年
- □ RCP8.5**并不能进一步的显著提升**森林生产力水平,表明正向促进的作用存在上限

□ 主被动结合构建的火烈度指标HCBI能够准确刻画乔木 层、林下层、林分总体的受损情况

□ 引入森林生长模型开展火后恢复预测具有良好的鲁棒性

□ 遥感数据驱动森林生长模型能够更灵活准确地预测空间 连续的LAI、NPP恢复情况

第一届多源遥感技 术及应用学术论坛

请各位专家批评指正!

lilinyuan@bjfu.edu.cn